Metamath Proof Explorer


Definition df-evl

Description: A simplification of evalSub when the evaluation ring is the same as the coefficient ring. (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Assertion df-evl
|- eval = ( i e. _V , r e. _V |-> ( ( i evalSub r ) ` ( Base ` r ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cevl
 |-  eval
1 vi
 |-  i
2 cvv
 |-  _V
3 vr
 |-  r
4 1 cv
 |-  i
5 ces
 |-  evalSub
6 3 cv
 |-  r
7 4 6 5 co
 |-  ( i evalSub r )
8 cbs
 |-  Base
9 6 8 cfv
 |-  ( Base ` r )
10 9 7 cfv
 |-  ( ( i evalSub r ) ` ( Base ` r ) )
11 1 3 2 2 10 cmpo
 |-  ( i e. _V , r e. _V |-> ( ( i evalSub r ) ` ( Base ` r ) ) )
12 0 11 wceq
 |-  eval = ( i e. _V , r e. _V |-> ( ( i evalSub r ) ` ( Base ` r ) ) )