Metamath Proof Explorer


Definition df-evl1

Description: Define the evaluation map for the univariate polynomial algebra. The function ( eval1R ) : V --> ( R ^m R ) makes sense when R is a ring, and V is the set of polynomials in ( Poly1R ) . This function maps an element of the formal polynomial algebra (with coefficients in R ) to a function from assignments to the variable from R into an element of R formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Assertion df-evl1
|- eval1 = ( r e. _V |-> [_ ( Base ` r ) / b ]_ ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval r ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ce1
 |-  eval1
1 vr
 |-  r
2 cvv
 |-  _V
3 cbs
 |-  Base
4 1 cv
 |-  r
5 4 3 cfv
 |-  ( Base ` r )
6 vb
 |-  b
7 vx
 |-  x
8 6 cv
 |-  b
9 cmap
 |-  ^m
10 c1o
 |-  1o
11 8 10 9 co
 |-  ( b ^m 1o )
12 8 11 9 co
 |-  ( b ^m ( b ^m 1o ) )
13 7 cv
 |-  x
14 vy
 |-  y
15 14 cv
 |-  y
16 15 csn
 |-  { y }
17 10 16 cxp
 |-  ( 1o X. { y } )
18 14 8 17 cmpt
 |-  ( y e. b |-> ( 1o X. { y } ) )
19 13 18 ccom
 |-  ( x o. ( y e. b |-> ( 1o X. { y } ) ) )
20 7 12 19 cmpt
 |-  ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) )
21 cevl
 |-  eval
22 10 4 21 co
 |-  ( 1o eval r )
23 20 22 ccom
 |-  ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval r ) )
24 6 5 23 csb
 |-  [_ ( Base ` r ) / b ]_ ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval r ) )
25 1 2 24 cmpt
 |-  ( r e. _V |-> [_ ( Base ` r ) / b ]_ ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval r ) ) )
26 0 25 wceq
 |-  eval1 = ( r e. _V |-> [_ ( Base ` r ) / b ]_ ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval r ) ) )