| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ces |
|- evalSub |
| 1 |
|
vi |
|- i |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vs |
|- s |
| 4 |
|
ccrg |
|- CRing |
| 5 |
|
cbs |
|- Base |
| 6 |
3
|
cv |
|- s |
| 7 |
6 5
|
cfv |
|- ( Base ` s ) |
| 8 |
|
vb |
|- b |
| 9 |
|
vr |
|- r |
| 10 |
|
csubrg |
|- SubRing |
| 11 |
6 10
|
cfv |
|- ( SubRing ` s ) |
| 12 |
1
|
cv |
|- i |
| 13 |
|
cmpl |
|- mPoly |
| 14 |
|
cress |
|- |`s |
| 15 |
9
|
cv |
|- r |
| 16 |
6 15 14
|
co |
|- ( s |`s r ) |
| 17 |
12 16 13
|
co |
|- ( i mPoly ( s |`s r ) ) |
| 18 |
|
vw |
|- w |
| 19 |
|
vf |
|- f |
| 20 |
18
|
cv |
|- w |
| 21 |
|
crh |
|- RingHom |
| 22 |
|
cpws |
|- ^s |
| 23 |
8
|
cv |
|- b |
| 24 |
|
cmap |
|- ^m |
| 25 |
23 12 24
|
co |
|- ( b ^m i ) |
| 26 |
6 25 22
|
co |
|- ( s ^s ( b ^m i ) ) |
| 27 |
20 26 21
|
co |
|- ( w RingHom ( s ^s ( b ^m i ) ) ) |
| 28 |
19
|
cv |
|- f |
| 29 |
|
cascl |
|- algSc |
| 30 |
20 29
|
cfv |
|- ( algSc ` w ) |
| 31 |
28 30
|
ccom |
|- ( f o. ( algSc ` w ) ) |
| 32 |
|
vx |
|- x |
| 33 |
32
|
cv |
|- x |
| 34 |
33
|
csn |
|- { x } |
| 35 |
25 34
|
cxp |
|- ( ( b ^m i ) X. { x } ) |
| 36 |
32 15 35
|
cmpt |
|- ( x e. r |-> ( ( b ^m i ) X. { x } ) ) |
| 37 |
31 36
|
wceq |
|- ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) |
| 38 |
|
cmvr |
|- mVar |
| 39 |
12 16 38
|
co |
|- ( i mVar ( s |`s r ) ) |
| 40 |
28 39
|
ccom |
|- ( f o. ( i mVar ( s |`s r ) ) ) |
| 41 |
|
vg |
|- g |
| 42 |
41
|
cv |
|- g |
| 43 |
33 42
|
cfv |
|- ( g ` x ) |
| 44 |
41 25 43
|
cmpt |
|- ( g e. ( b ^m i ) |-> ( g ` x ) ) |
| 45 |
32 12 44
|
cmpt |
|- ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) |
| 46 |
40 45
|
wceq |
|- ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) |
| 47 |
37 46
|
wa |
|- ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) |
| 48 |
47 19 27
|
crio |
|- ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) |
| 49 |
18 17 48
|
csb |
|- [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) |
| 50 |
9 11 49
|
cmpt |
|- ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) |
| 51 |
8 7 50
|
csb |
|- [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) |
| 52 |
1 3 2 4 51
|
cmpo |
|- ( i e. _V , s e. CRing |-> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) ) |
| 53 |
0 52
|
wceq |
|- evalSub = ( i e. _V , s e. CRing |-> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) ) |