Step |
Hyp |
Ref |
Expression |
0 |
|
ces |
|- evalSub |
1 |
|
vi |
|- i |
2 |
|
cvv |
|- _V |
3 |
|
vs |
|- s |
4 |
|
ccrg |
|- CRing |
5 |
|
cbs |
|- Base |
6 |
3
|
cv |
|- s |
7 |
6 5
|
cfv |
|- ( Base ` s ) |
8 |
|
vb |
|- b |
9 |
|
vr |
|- r |
10 |
|
csubrg |
|- SubRing |
11 |
6 10
|
cfv |
|- ( SubRing ` s ) |
12 |
1
|
cv |
|- i |
13 |
|
cmpl |
|- mPoly |
14 |
|
cress |
|- |`s |
15 |
9
|
cv |
|- r |
16 |
6 15 14
|
co |
|- ( s |`s r ) |
17 |
12 16 13
|
co |
|- ( i mPoly ( s |`s r ) ) |
18 |
|
vw |
|- w |
19 |
|
vf |
|- f |
20 |
18
|
cv |
|- w |
21 |
|
crh |
|- RingHom |
22 |
|
cpws |
|- ^s |
23 |
8
|
cv |
|- b |
24 |
|
cmap |
|- ^m |
25 |
23 12 24
|
co |
|- ( b ^m i ) |
26 |
6 25 22
|
co |
|- ( s ^s ( b ^m i ) ) |
27 |
20 26 21
|
co |
|- ( w RingHom ( s ^s ( b ^m i ) ) ) |
28 |
19
|
cv |
|- f |
29 |
|
cascl |
|- algSc |
30 |
20 29
|
cfv |
|- ( algSc ` w ) |
31 |
28 30
|
ccom |
|- ( f o. ( algSc ` w ) ) |
32 |
|
vx |
|- x |
33 |
32
|
cv |
|- x |
34 |
33
|
csn |
|- { x } |
35 |
25 34
|
cxp |
|- ( ( b ^m i ) X. { x } ) |
36 |
32 15 35
|
cmpt |
|- ( x e. r |-> ( ( b ^m i ) X. { x } ) ) |
37 |
31 36
|
wceq |
|- ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) |
38 |
|
cmvr |
|- mVar |
39 |
12 16 38
|
co |
|- ( i mVar ( s |`s r ) ) |
40 |
28 39
|
ccom |
|- ( f o. ( i mVar ( s |`s r ) ) ) |
41 |
|
vg |
|- g |
42 |
41
|
cv |
|- g |
43 |
33 42
|
cfv |
|- ( g ` x ) |
44 |
41 25 43
|
cmpt |
|- ( g e. ( b ^m i ) |-> ( g ` x ) ) |
45 |
32 12 44
|
cmpt |
|- ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) |
46 |
40 45
|
wceq |
|- ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) |
47 |
37 46
|
wa |
|- ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) |
48 |
47 19 27
|
crio |
|- ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) |
49 |
18 17 48
|
csb |
|- [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) |
50 |
9 11 49
|
cmpt |
|- ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) |
51 |
8 7 50
|
csb |
|- [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) |
52 |
1 3 2 4 51
|
cmpo |
|- ( i e. _V , s e. CRing |-> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) ) |
53 |
0 52
|
wceq |
|- evalSub = ( i e. _V , s e. CRing |-> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) ) |