Metamath Proof Explorer


Definition df-exid

Description: A device to add an identity element to various sorts of internal operations. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.)

Ref Expression
Assertion df-exid
|- ExId = { g | E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cexid
 |-  ExId
1 vg
 |-  g
2 vx
 |-  x
3 1 cv
 |-  g
4 3 cdm
 |-  dom g
5 4 cdm
 |-  dom dom g
6 vy
 |-  y
7 2 cv
 |-  x
8 6 cv
 |-  y
9 7 8 3 co
 |-  ( x g y )
10 9 8 wceq
 |-  ( x g y ) = y
11 8 7 3 co
 |-  ( y g x )
12 11 8 wceq
 |-  ( y g x ) = y
13 10 12 wa
 |-  ( ( x g y ) = y /\ ( y g x ) = y )
14 13 6 5 wral
 |-  A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y )
15 14 2 5 wrex
 |-  E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y )
16 15 1 cab
 |-  { g | E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) }
17 0 16 wceq
 |-  ExId = { g | E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) }