Description: A device to add an identity element to various sorts of internal operations. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-exid | |- ExId = { g | E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cexid | |- ExId |
|
1 | vg | |- g |
|
2 | vx | |- x |
|
3 | 1 | cv | |- g |
4 | 3 | cdm | |- dom g |
5 | 4 | cdm | |- dom dom g |
6 | vy | |- y |
|
7 | 2 | cv | |- x |
8 | 6 | cv | |- y |
9 | 7 8 3 | co | |- ( x g y ) |
10 | 9 8 | wceq | |- ( x g y ) = y |
11 | 8 7 3 | co | |- ( y g x ) |
12 | 11 8 | wceq | |- ( y g x ) = y |
13 | 10 12 | wa | |- ( ( x g y ) = y /\ ( y g x ) = y ) |
14 | 13 6 5 | wral | |- A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) |
15 | 14 2 5 | wrex | |- E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) |
16 | 15 1 | cab | |- { g | E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) } |
17 | 0 16 | wceq | |- ExId = { g | E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) } |