Description: A device to add an identity element to various sorts of internal operations. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-exid | |- ExId = { g | E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cexid | |- ExId | |
| 1 | vg | |- g | |
| 2 | vx | |- x | |
| 3 | 1 | cv | |- g | 
| 4 | 3 | cdm | |- dom g | 
| 5 | 4 | cdm | |- dom dom g | 
| 6 | vy | |- y | |
| 7 | 2 | cv | |- x | 
| 8 | 6 | cv | |- y | 
| 9 | 7 8 3 | co | |- ( x g y ) | 
| 10 | 9 8 | wceq | |- ( x g y ) = y | 
| 11 | 8 7 3 | co | |- ( y g x ) | 
| 12 | 11 8 | wceq | |- ( y g x ) = y | 
| 13 | 10 12 | wa | |- ( ( x g y ) = y /\ ( y g x ) = y ) | 
| 14 | 13 6 5 | wral | |- A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) | 
| 15 | 14 2 5 | wrex | |- E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) | 
| 16 | 15 1 | cab |  |-  { g | E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) } | 
| 17 | 0 16 | wceq |  |-  ExId = { g | E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) } |