Description: Define exponentiation to nonnegative integer powers. For example, ( 5 ^ 2 ) = 2 5 ( ex-exp ). Terminology: In general, "exponentiation" is the operation of raising a "base" x to the power of the "exponent" y , resulting in the "power" ( x ^ y ) , also called "x to the power of y". In this case, "integer exponentiation" is the operation of raising a complex "base" x to the power of an integer y , resulting in the "integer power" ( x ^ y ) .
This definition is not meant to be used directly; instead, exp0 and expp1 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (_Science_ 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts.
10-Jun-2005: The definition was extended to include zero exponents, so that 0 ^ 0 = 1 per the convention of Definition 10-4.1 of Gleason p. 134 ( 0exp0e1 ).
4-Jun-2014: The definition was extended to include negative integer exponents. For example, ( -u 3 ^ -u 2 ) = ( 1 / 9 ) ( ex-exp ). The case x = 0 , y < 0 gives the value ( 1 / 0 ) , so we will avoid this case in our theorems.
For a definition of exponentiation including complex exponents see df-cxp (complex exponentiation). Both definitions are equivalent for integer exponents, see cxpexpz . (Contributed by Raph Levien, 20-May-2004) (Revised by NM, 15-Oct-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | df-exp | |- ^ = ( x e. CC , y e. ZZ |-> if ( y = 0 , 1 , if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cexp | |- ^ |
|
1 | vx | |- x |
|
2 | cc | |- CC |
|
3 | vy | |- y |
|
4 | cz | |- ZZ |
|
5 | 3 | cv | |- y |
6 | cc0 | |- 0 |
|
7 | 5 6 | wceq | |- y = 0 |
8 | c1 | |- 1 |
|
9 | clt | |- < |
|
10 | 6 5 9 | wbr | |- 0 < y |
11 | cmul | |- x. |
|
12 | cn | |- NN |
|
13 | 1 | cv | |- x |
14 | 13 | csn | |- { x } |
15 | 12 14 | cxp | |- ( NN X. { x } ) |
16 | 11 15 8 | cseq | |- seq 1 ( x. , ( NN X. { x } ) ) |
17 | 5 16 | cfv | |- ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) |
18 | cdiv | |- / |
|
19 | 5 | cneg | |- -u y |
20 | 19 16 | cfv | |- ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) |
21 | 8 20 18 | co | |- ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) |
22 | 10 17 21 | cif | |- if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) |
23 | 7 8 22 | cif | |- if ( y = 0 , 1 , if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) ) |
24 | 1 3 2 4 23 | cmpo | |- ( x e. CC , y e. ZZ |-> if ( y = 0 , 1 , if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) ) ) |
25 | 0 24 | wceq | |- ^ = ( x e. CC , y e. ZZ |-> if ( y = 0 , 1 , if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) ) ) |