Metamath Proof Explorer


Definition df-fac

Description: Define the factorial function on nonnegative integers. For example, ( !5 ) = 1 2 0 because 1 x. 2 x. 3 x. 4 x. 5 = 1 2 0 ( ex-fac ). In the literature, the factorial function is written as a postscript exclamation point. (Contributed by NM, 2-Dec-2004)

Ref Expression
Assertion df-fac
|- ! = ( { <. 0 , 1 >. } u. seq 1 ( x. , _I ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfa
 |-  !
1 cc0
 |-  0
2 c1
 |-  1
3 1 2 cop
 |-  <. 0 , 1 >.
4 3 csn
 |-  { <. 0 , 1 >. }
5 cmul
 |-  x.
6 cid
 |-  _I
7 5 6 2 cseq
 |-  seq 1 ( x. , _I )
8 4 7 cun
 |-  ( { <. 0 , 1 >. } u. seq 1 ( x. , _I ) )
9 0 8 wceq
 |-  ! = ( { <. 0 , 1 >. } u. seq 1 ( x. , _I ) )