| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cfbas |  |-  fBas | 
						
							| 1 |  | vw |  |-  w | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 | 1 | cv |  |-  w | 
						
							| 5 | 4 | cpw |  |-  ~P w | 
						
							| 6 | 5 | cpw |  |-  ~P ~P w | 
						
							| 7 | 3 | cv |  |-  x | 
						
							| 8 |  | c0 |  |-  (/) | 
						
							| 9 | 7 8 | wne |  |-  x =/= (/) | 
						
							| 10 | 8 7 | wnel |  |-  (/) e/ x | 
						
							| 11 |  | vy |  |-  y | 
						
							| 12 |  | vz |  |-  z | 
						
							| 13 | 11 | cv |  |-  y | 
						
							| 14 | 12 | cv |  |-  z | 
						
							| 15 | 13 14 | cin |  |-  ( y i^i z ) | 
						
							| 16 | 15 | cpw |  |-  ~P ( y i^i z ) | 
						
							| 17 | 7 16 | cin |  |-  ( x i^i ~P ( y i^i z ) ) | 
						
							| 18 | 17 8 | wne |  |-  ( x i^i ~P ( y i^i z ) ) =/= (/) | 
						
							| 19 | 18 12 7 | wral |  |-  A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) | 
						
							| 20 | 19 11 7 | wral |  |-  A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) | 
						
							| 21 | 9 10 20 | w3a |  |-  ( x =/= (/) /\ (/) e/ x /\ A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) ) | 
						
							| 22 | 21 3 6 | crab |  |-  { x e. ~P ~P w | ( x =/= (/) /\ (/) e/ x /\ A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) ) } | 
						
							| 23 | 1 2 22 | cmpt |  |-  ( w e. _V |-> { x e. ~P ~P w | ( x =/= (/) /\ (/) e/ x /\ A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) ) } ) | 
						
							| 24 | 0 23 | wceq |  |-  fBas = ( w e. _V |-> { x e. ~P ~P w | ( x =/= (/) /\ (/) e/ x /\ A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) ) } ) |