Step |
Hyp |
Ref |
Expression |
0 |
|
cfbas |
|- fBas |
1 |
|
vw |
|- w |
2 |
|
cvv |
|- _V |
3 |
|
vx |
|- x |
4 |
1
|
cv |
|- w |
5 |
4
|
cpw |
|- ~P w |
6 |
5
|
cpw |
|- ~P ~P w |
7 |
3
|
cv |
|- x |
8 |
|
c0 |
|- (/) |
9 |
7 8
|
wne |
|- x =/= (/) |
10 |
8 7
|
wnel |
|- (/) e/ x |
11 |
|
vy |
|- y |
12 |
|
vz |
|- z |
13 |
11
|
cv |
|- y |
14 |
12
|
cv |
|- z |
15 |
13 14
|
cin |
|- ( y i^i z ) |
16 |
15
|
cpw |
|- ~P ( y i^i z ) |
17 |
7 16
|
cin |
|- ( x i^i ~P ( y i^i z ) ) |
18 |
17 8
|
wne |
|- ( x i^i ~P ( y i^i z ) ) =/= (/) |
19 |
18 12 7
|
wral |
|- A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) |
20 |
19 11 7
|
wral |
|- A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) |
21 |
9 10 20
|
w3a |
|- ( x =/= (/) /\ (/) e/ x /\ A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) ) |
22 |
21 3 6
|
crab |
|- { x e. ~P ~P w | ( x =/= (/) /\ (/) e/ x /\ A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) ) } |
23 |
1 2 22
|
cmpt |
|- ( w e. _V |-> { x e. ~P ~P w | ( x =/= (/) /\ (/) e/ x /\ A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) ) } ) |
24 |
0 23
|
wceq |
|- fBas = ( w e. _V |-> { x e. ~P ~P w | ( x =/= (/) /\ (/) e/ x /\ A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) ) } ) |