Metamath Proof Explorer


Definition df-fcls

Description: Define a function that takes a filter in a topology to its set of cluster points. (Contributed by Jeff Hankins, 10-Nov-2009)

Ref Expression
Assertion df-fcls
|- fClus = ( j e. Top , f e. U. ran Fil |-> if ( U. j = U. f , |^|_ x e. f ( ( cls ` j ) ` x ) , (/) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfcls
 |-  fClus
1 vj
 |-  j
2 ctop
 |-  Top
3 vf
 |-  f
4 cfil
 |-  Fil
5 4 crn
 |-  ran Fil
6 5 cuni
 |-  U. ran Fil
7 1 cv
 |-  j
8 7 cuni
 |-  U. j
9 3 cv
 |-  f
10 9 cuni
 |-  U. f
11 8 10 wceq
 |-  U. j = U. f
12 vx
 |-  x
13 ccl
 |-  cls
14 7 13 cfv
 |-  ( cls ` j )
15 12 cv
 |-  x
16 15 14 cfv
 |-  ( ( cls ` j ) ` x )
17 12 9 16 ciin
 |-  |^|_ x e. f ( ( cls ` j ) ` x )
18 c0
 |-  (/)
19 11 17 18 cif
 |-  if ( U. j = U. f , |^|_ x e. f ( ( cls ` j ) ` x ) , (/) )
20 1 3 2 6 19 cmpo
 |-  ( j e. Top , f e. U. ran Fil |-> if ( U. j = U. f , |^|_ x e. f ( ( cls ` j ) ` x ) , (/) ) )
21 0 20 wceq
 |-  fClus = ( j e. Top , f e. U. ran Fil |-> if ( U. j = U. f , |^|_ x e. f ( ( cls ` j ) ` x ) , (/) ) )