Metamath Proof Explorer


Definition df-fg

Description: Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 11-Jul-2015)

Ref Expression
Assertion df-fg
|- filGen = ( w e. _V , x e. ( fBas ` w ) |-> { y e. ~P w | ( x i^i ~P y ) =/= (/) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfg
 |-  filGen
1 vw
 |-  w
2 cvv
 |-  _V
3 vx
 |-  x
4 cfbas
 |-  fBas
5 1 cv
 |-  w
6 5 4 cfv
 |-  ( fBas ` w )
7 vy
 |-  y
8 5 cpw
 |-  ~P w
9 3 cv
 |-  x
10 7 cv
 |-  y
11 10 cpw
 |-  ~P y
12 9 11 cin
 |-  ( x i^i ~P y )
13 c0
 |-  (/)
14 12 13 wne
 |-  ( x i^i ~P y ) =/= (/)
15 14 7 8 crab
 |-  { y e. ~P w | ( x i^i ~P y ) =/= (/) }
16 1 3 2 6 15 cmpo
 |-  ( w e. _V , x e. ( fBas ` w ) |-> { y e. ~P w | ( x i^i ~P y ) =/= (/) } )
17 0 16 wceq
 |-  filGen = ( w e. _V , x e. ( fBas ` w ) |-> { y e. ~P w | ( x i^i ~P y ) =/= (/) } )