Metamath Proof Explorer


Definition df-fin1a

Description: A set is Ia-finite iff it is not the union of two I-infinite sets. Equivalent to definition Ia of Levy58 p. 2. A I-infinite Ia-finite set is also known as an amorphous set. This is the second of Levy's eight definitions of finite set. Levy's I-finite is equivalent to our df-fin and not repeated here. These eight definitions are equivalent with Choice but strictly decreasing in strength in models where Choice fails; conversely, they provide a series of increasingly stronger notions of infiniteness. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Assertion df-fin1a
|- Fin1a = { x | A. y e. ~P x ( y e. Fin \/ ( x \ y ) e. Fin ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfin1a
 |-  Fin1a
1 vx
 |-  x
2 vy
 |-  y
3 1 cv
 |-  x
4 3 cpw
 |-  ~P x
5 2 cv
 |-  y
6 cfn
 |-  Fin
7 5 6 wcel
 |-  y e. Fin
8 3 5 cdif
 |-  ( x \ y )
9 8 6 wcel
 |-  ( x \ y ) e. Fin
10 7 9 wo
 |-  ( y e. Fin \/ ( x \ y ) e. Fin )
11 10 2 4 wral
 |-  A. y e. ~P x ( y e. Fin \/ ( x \ y ) e. Fin )
12 11 1 cab
 |-  { x | A. y e. ~P x ( y e. Fin \/ ( x \ y ) e. Fin ) }
13 0 12 wceq
 |-  Fin1a = { x | A. y e. ~P x ( y e. Fin \/ ( x \ y ) e. Fin ) }