Description: A set is II-finite (Tarski finite) iff every nonempty chain of subsets contains a maximum element. Definition II of Levy58 p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-fin2 | |- Fin2 = { x | A. y e. ~P ~P x ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cfin2 | |- Fin2 |
|
1 | vx | |- x |
|
2 | vy | |- y |
|
3 | 1 | cv | |- x |
4 | 3 | cpw | |- ~P x |
5 | 4 | cpw | |- ~P ~P x |
6 | 2 | cv | |- y |
7 | c0 | |- (/) |
|
8 | 6 7 | wne | |- y =/= (/) |
9 | crpss | |- [C.] |
|
10 | 6 9 | wor | |- [C.] Or y |
11 | 8 10 | wa | |- ( y =/= (/) /\ [C.] Or y ) |
12 | 6 | cuni | |- U. y |
13 | 12 6 | wcel | |- U. y e. y |
14 | 11 13 | wi | |- ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y ) |
15 | 14 2 5 | wral | |- A. y e. ~P ~P x ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y ) |
16 | 15 1 | cab | |- { x | A. y e. ~P ~P x ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y ) } |
17 | 0 16 | wceq | |- Fin2 = { x | A. y e. ~P ~P x ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y ) } |