Metamath Proof Explorer


Definition df-fin2

Description: A set is II-finite (Tarski finite) iff every nonempty chain of subsets contains a maximum element. Definition II of Levy58 p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Assertion df-fin2
|- Fin2 = { x | A. y e. ~P ~P x ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfin2
 |-  Fin2
1 vx
 |-  x
2 vy
 |-  y
3 1 cv
 |-  x
4 3 cpw
 |-  ~P x
5 4 cpw
 |-  ~P ~P x
6 2 cv
 |-  y
7 c0
 |-  (/)
8 6 7 wne
 |-  y =/= (/)
9 crpss
 |-  [C.]
10 6 9 wor
 |-  [C.] Or y
11 8 10 wa
 |-  ( y =/= (/) /\ [C.] Or y )
12 6 cuni
 |-  U. y
13 12 6 wcel
 |-  U. y e. y
14 11 13 wi
 |-  ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y )
15 14 2 5 wral
 |-  A. y e. ~P ~P x ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y )
16 15 1 cab
 |-  { x | A. y e. ~P ~P x ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y ) }
17 0 16 wceq
 |-  Fin2 = { x | A. y e. ~P ~P x ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y ) }