Description: A set is III-finite (weakly Dedekind finite) iff its power set is Dedekind finite. Definition III of Levy58 p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-fin3 | |- Fin3 = { x | ~P x e. Fin4 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cfin3 | |- Fin3 |
|
1 | vx | |- x |
|
2 | 1 | cv | |- x |
3 | 2 | cpw | |- ~P x |
4 | cfin4 | |- Fin4 |
|
5 | 3 4 | wcel | |- ~P x e. Fin4 |
6 | 5 1 | cab | |- { x | ~P x e. Fin4 } |
7 | 0 6 | wceq | |- Fin3 = { x | ~P x e. Fin4 } |