Metamath Proof Explorer


Definition df-fin3

Description: A set is III-finite (weakly Dedekind finite) iff its power set is Dedekind finite. Definition III of Levy58 p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Assertion df-fin3
|- Fin3 = { x | ~P x e. Fin4 }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfin3
 |-  Fin3
1 vx
 |-  x
2 1 cv
 |-  x
3 2 cpw
 |-  ~P x
4 cfin4
 |-  Fin4
5 3 4 wcel
 |-  ~P x e. Fin4
6 5 1 cab
 |-  { x | ~P x e. Fin4 }
7 0 6 wceq
 |-  Fin3 = { x | ~P x e. Fin4 }