Description: A set is III-finite (weakly Dedekind finite) iff its power set is Dedekind finite. Definition III of Levy58 p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fin3 | |- Fin3 = { x | ~P x e. Fin4 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfin3 | |- Fin3 |
|
| 1 | vx | |- x |
|
| 2 | 1 | cv | |- x |
| 3 | 2 | cpw | |- ~P x |
| 4 | cfin4 | |- Fin4 |
|
| 5 | 3 4 | wcel | |- ~P x e. Fin4 |
| 6 | 5 1 | cab | |- { x | ~P x e. Fin4 } |
| 7 | 0 6 | wceq | |- Fin3 = { x | ~P x e. Fin4 } |