Metamath Proof Explorer


Definition df-fin7

Description: A set is VII-finite iff it cannot be infinitely well-ordered. Equivalent to definition VII of Levy58 p. 4. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Assertion df-fin7
|- Fin7 = { x | -. E. y e. ( On \ _om ) x ~~ y }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfin7
 |-  Fin7
1 vx
 |-  x
2 vy
 |-  y
3 con0
 |-  On
4 com
 |-  _om
5 3 4 cdif
 |-  ( On \ _om )
6 1 cv
 |-  x
7 cen
 |-  ~~
8 2 cv
 |-  y
9 6 8 7 wbr
 |-  x ~~ y
10 9 2 5 wrex
 |-  E. y e. ( On \ _om ) x ~~ y
11 10 wn
 |-  -. E. y e. ( On \ _om ) x ~~ y
12 11 1 cab
 |-  { x | -. E. y e. ( On \ _om ) x ~~ y }
13 0 12 wceq
 |-  Fin7 = { x | -. E. y e. ( On \ _om ) x ~~ y }