Description: A set is VII-finite iff it cannot be infinitely well-ordered. Equivalent to definition VII of Levy58 p. 4. (Contributed by Stefan O'Rear, 12-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fin7 | |- Fin7 = { x | -. E. y e. ( On \ _om ) x ~~ y } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfin7 | |- Fin7 |
|
| 1 | vx | |- x |
|
| 2 | vy | |- y |
|
| 3 | con0 | |- On |
|
| 4 | com | |- _om |
|
| 5 | 3 4 | cdif | |- ( On \ _om ) |
| 6 | 1 | cv | |- x |
| 7 | cen | |- ~~ |
|
| 8 | 2 | cv | |- y |
| 9 | 6 8 7 | wbr | |- x ~~ y |
| 10 | 9 2 5 | wrex | |- E. y e. ( On \ _om ) x ~~ y |
| 11 | 10 | wn | |- -. E. y e. ( On \ _om ) x ~~ y |
| 12 | 11 1 | cab | |- { x | -. E. y e. ( On \ _om ) x ~~ y } |
| 13 | 0 12 | wceq | |- Fin7 = { x | -. E. y e. ( On \ _om ) x ~~ y } |