Metamath Proof Explorer


Definition df-fl

Description: Define the floor (greatest integer less than or equal to) function. See flval for its value, fllelt for its basic property, and flcl for its closure. For example, ( |_( 3 / 2 ) ) = 1 while ( |_-u ( 3 / 2 ) ) = -u 2 ( ex-fl ).

The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004)

Ref Expression
Assertion df-fl
|- |_ = ( x e. RR |-> ( iota_ y e. ZZ ( y <_ x /\ x < ( y + 1 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfl
 |-  |_
1 vx
 |-  x
2 cr
 |-  RR
3 vy
 |-  y
4 cz
 |-  ZZ
5 3 cv
 |-  y
6 cle
 |-  <_
7 1 cv
 |-  x
8 5 7 6 wbr
 |-  y <_ x
9 clt
 |-  <
10 caddc
 |-  +
11 c1
 |-  1
12 5 11 10 co
 |-  ( y + 1 )
13 7 12 9 wbr
 |-  x < ( y + 1 )
14 8 13 wa
 |-  ( y <_ x /\ x < ( y + 1 ) )
15 14 3 4 crio
 |-  ( iota_ y e. ZZ ( y <_ x /\ x < ( y + 1 ) ) )
16 1 2 15 cmpt
 |-  ( x e. RR |-> ( iota_ y e. ZZ ( y <_ x /\ x < ( y + 1 ) ) ) )
17 0 16 wceq
 |-  |_ = ( x e. RR |-> ( iota_ y e. ZZ ( y <_ x /\ x < ( y + 1 ) ) ) )