| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cfm |  |-  FilMap | 
						
							| 1 |  | vx |  |-  x | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vf |  |-  f | 
						
							| 4 |  | vy |  |-  y | 
						
							| 5 |  | cfbas |  |-  fBas | 
						
							| 6 | 3 | cv |  |-  f | 
						
							| 7 | 6 | cdm |  |-  dom f | 
						
							| 8 | 7 5 | cfv |  |-  ( fBas ` dom f ) | 
						
							| 9 | 1 | cv |  |-  x | 
						
							| 10 |  | cfg |  |-  filGen | 
						
							| 11 |  | vt |  |-  t | 
						
							| 12 | 4 | cv |  |-  y | 
						
							| 13 | 11 | cv |  |-  t | 
						
							| 14 | 6 13 | cima |  |-  ( f " t ) | 
						
							| 15 | 11 12 14 | cmpt |  |-  ( t e. y |-> ( f " t ) ) | 
						
							| 16 | 15 | crn |  |-  ran ( t e. y |-> ( f " t ) ) | 
						
							| 17 | 9 16 10 | co |  |-  ( x filGen ran ( t e. y |-> ( f " t ) ) ) | 
						
							| 18 | 4 8 17 | cmpt |  |-  ( y e. ( fBas ` dom f ) |-> ( x filGen ran ( t e. y |-> ( f " t ) ) ) ) | 
						
							| 19 | 1 3 2 2 18 | cmpo |  |-  ( x e. _V , f e. _V |-> ( y e. ( fBas ` dom f ) |-> ( x filGen ran ( t e. y |-> ( f " t ) ) ) ) ) | 
						
							| 20 | 0 19 | wceq |  |-  FilMap = ( x e. _V , f e. _V |-> ( y e. ( fBas ` dom f ) |-> ( x filGen ran ( t e. y |-> ( f " t ) ) ) ) ) |