Description: Define the field of fractions of a given integral domain. (Contributed by Thierry Arnoux, 26-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | df-frac | |- Frac = ( r e. _V |-> ( r RLocal ( RLReg ` r ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cfrac | |- Frac |
|
1 | vr | |- r |
|
2 | cvv | |- _V |
|
3 | 1 | cv | |- r |
4 | crloc | |- RLocal |
|
5 | crlreg | |- RLReg |
|
6 | 3 5 | cfv | |- ( RLReg ` r ) |
7 | 3 6 4 | co | |- ( r RLocal ( RLReg ` r ) ) |
8 | 1 2 7 | cmpt | |- ( r e. _V |-> ( r RLocal ( RLReg ` r ) ) ) |
9 | 0 8 | wceq | |- Frac = ( r e. _V |-> ( r RLocal ( RLReg ` r ) ) ) |