| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cR |  |-  R | 
						
							| 1 |  | cA |  |-  A | 
						
							| 2 |  | cF |  |-  F | 
						
							| 3 | 1 0 2 | cfrecs |  |-  frecs ( R , A , F ) | 
						
							| 4 |  | vf |  |-  f | 
						
							| 5 |  | vx |  |-  x | 
						
							| 6 | 4 | cv |  |-  f | 
						
							| 7 | 5 | cv |  |-  x | 
						
							| 8 | 6 7 | wfn |  |-  f Fn x | 
						
							| 9 | 7 1 | wss |  |-  x C_ A | 
						
							| 10 |  | vy |  |-  y | 
						
							| 11 | 10 | cv |  |-  y | 
						
							| 12 | 1 0 11 | cpred |  |-  Pred ( R , A , y ) | 
						
							| 13 | 12 7 | wss |  |-  Pred ( R , A , y ) C_ x | 
						
							| 14 | 13 10 7 | wral |  |-  A. y e. x Pred ( R , A , y ) C_ x | 
						
							| 15 | 9 14 | wa |  |-  ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) | 
						
							| 16 | 11 6 | cfv |  |-  ( f ` y ) | 
						
							| 17 | 6 12 | cres |  |-  ( f |` Pred ( R , A , y ) ) | 
						
							| 18 | 11 17 2 | co |  |-  ( y F ( f |` Pred ( R , A , y ) ) ) | 
						
							| 19 | 16 18 | wceq |  |-  ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) | 
						
							| 20 | 19 10 7 | wral |  |-  A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) | 
						
							| 21 | 8 15 20 | w3a |  |-  ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) | 
						
							| 22 | 21 5 | wex |  |-  E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) | 
						
							| 23 | 22 4 | cab |  |-  { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 24 | 23 | cuni |  |-  U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 25 | 3 24 | wceq |  |-  frecs ( R , A , F ) = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) } |