| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfth |
|- Faith |
| 1 |
|
vc |
|- c |
| 2 |
|
ccat |
|- Cat |
| 3 |
|
vd |
|- d |
| 4 |
|
vf |
|- f |
| 5 |
|
vg |
|- g |
| 6 |
4
|
cv |
|- f |
| 7 |
1
|
cv |
|- c |
| 8 |
|
cfunc |
|- Func |
| 9 |
3
|
cv |
|- d |
| 10 |
7 9 8
|
co |
|- ( c Func d ) |
| 11 |
5
|
cv |
|- g |
| 12 |
6 11 10
|
wbr |
|- f ( c Func d ) g |
| 13 |
|
vx |
|- x |
| 14 |
|
cbs |
|- Base |
| 15 |
7 14
|
cfv |
|- ( Base ` c ) |
| 16 |
|
vy |
|- y |
| 17 |
13
|
cv |
|- x |
| 18 |
16
|
cv |
|- y |
| 19 |
17 18 11
|
co |
|- ( x g y ) |
| 20 |
19
|
ccnv |
|- `' ( x g y ) |
| 21 |
20
|
wfun |
|- Fun `' ( x g y ) |
| 22 |
21 16 15
|
wral |
|- A. y e. ( Base ` c ) Fun `' ( x g y ) |
| 23 |
22 13 15
|
wral |
|- A. x e. ( Base ` c ) A. y e. ( Base ` c ) Fun `' ( x g y ) |
| 24 |
12 23
|
wa |
|- ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) Fun `' ( x g y ) ) |
| 25 |
24 4 5
|
copab |
|- { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) Fun `' ( x g y ) ) } |
| 26 |
1 3 2 2 25
|
cmpo |
|- ( c e. Cat , d e. Cat |-> { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) Fun `' ( x g y ) ) } ) |
| 27 |
0 26
|
wceq |
|- Faith = ( c e. Cat , d e. Cat |-> { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) Fun `' ( x g y ) ) } ) |