Step |
Hyp |
Ref |
Expression |
0 |
|
cfuc |
|- FuncCat |
1 |
|
vt |
|- t |
2 |
|
ccat |
|- Cat |
3 |
|
vu |
|- u |
4 |
|
cbs |
|- Base |
5 |
|
cnx |
|- ndx |
6 |
5 4
|
cfv |
|- ( Base ` ndx ) |
7 |
1
|
cv |
|- t |
8 |
|
cfunc |
|- Func |
9 |
3
|
cv |
|- u |
10 |
7 9 8
|
co |
|- ( t Func u ) |
11 |
6 10
|
cop |
|- <. ( Base ` ndx ) , ( t Func u ) >. |
12 |
|
chom |
|- Hom |
13 |
5 12
|
cfv |
|- ( Hom ` ndx ) |
14 |
|
cnat |
|- Nat |
15 |
7 9 14
|
co |
|- ( t Nat u ) |
16 |
13 15
|
cop |
|- <. ( Hom ` ndx ) , ( t Nat u ) >. |
17 |
|
cco |
|- comp |
18 |
5 17
|
cfv |
|- ( comp ` ndx ) |
19 |
|
vv |
|- v |
20 |
10 10
|
cxp |
|- ( ( t Func u ) X. ( t Func u ) ) |
21 |
|
vh |
|- h |
22 |
|
c1st |
|- 1st |
23 |
19
|
cv |
|- v |
24 |
23 22
|
cfv |
|- ( 1st ` v ) |
25 |
|
vf |
|- f |
26 |
|
c2nd |
|- 2nd |
27 |
23 26
|
cfv |
|- ( 2nd ` v ) |
28 |
|
vg |
|- g |
29 |
|
vb |
|- b |
30 |
28
|
cv |
|- g |
31 |
21
|
cv |
|- h |
32 |
30 31 15
|
co |
|- ( g ( t Nat u ) h ) |
33 |
|
va |
|- a |
34 |
25
|
cv |
|- f |
35 |
34 30 15
|
co |
|- ( f ( t Nat u ) g ) |
36 |
|
vx |
|- x |
37 |
7 4
|
cfv |
|- ( Base ` t ) |
38 |
29
|
cv |
|- b |
39 |
36
|
cv |
|- x |
40 |
39 38
|
cfv |
|- ( b ` x ) |
41 |
34 22
|
cfv |
|- ( 1st ` f ) |
42 |
39 41
|
cfv |
|- ( ( 1st ` f ) ` x ) |
43 |
30 22
|
cfv |
|- ( 1st ` g ) |
44 |
39 43
|
cfv |
|- ( ( 1st ` g ) ` x ) |
45 |
42 44
|
cop |
|- <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. |
46 |
9 17
|
cfv |
|- ( comp ` u ) |
47 |
31 22
|
cfv |
|- ( 1st ` h ) |
48 |
39 47
|
cfv |
|- ( ( 1st ` h ) ` x ) |
49 |
45 48 46
|
co |
|- ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) |
50 |
33
|
cv |
|- a |
51 |
39 50
|
cfv |
|- ( a ` x ) |
52 |
40 51 49
|
co |
|- ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) |
53 |
36 37 52
|
cmpt |
|- ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) |
54 |
29 33 32 35 53
|
cmpo |
|- ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) |
55 |
28 27 54
|
csb |
|- [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) |
56 |
25 24 55
|
csb |
|- [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) |
57 |
19 21 20 10 56
|
cmpo |
|- ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
58 |
18 57
|
cop |
|- <. ( comp ` ndx ) , ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. |
59 |
11 16 58
|
ctp |
|- { <. ( Base ` ndx ) , ( t Func u ) >. , <. ( Hom ` ndx ) , ( t Nat u ) >. , <. ( comp ` ndx ) , ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } |
60 |
1 3 2 2 59
|
cmpo |
|- ( t e. Cat , u e. Cat |-> { <. ( Base ` ndx ) , ( t Func u ) >. , <. ( Hom ` ndx ) , ( t Nat u ) >. , <. ( comp ` ndx ) , ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } ) |
61 |
0 60
|
wceq |
|- FuncCat = ( t e. Cat , u e. Cat |-> { <. ( Base ` ndx ) , ( t Func u ) >. , <. ( Hom ` ndx ) , ( t Nat u ) >. , <. ( comp ` ndx ) , ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } ) |