Metamath Proof Explorer


Definition df-fz

Description: Define an operation that produces a finite set of sequential integers. Read " M ... N " as "the set of integers from M to N inclusive". See fzval for its value and additional comments. (Contributed by NM, 6-Sep-2005)

Ref Expression
Assertion df-fz
|- ... = ( m e. ZZ , n e. ZZ |-> { k e. ZZ | ( m <_ k /\ k <_ n ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfz
 |-  ...
1 vm
 |-  m
2 cz
 |-  ZZ
3 vn
 |-  n
4 vk
 |-  k
5 1 cv
 |-  m
6 cle
 |-  <_
7 4 cv
 |-  k
8 5 7 6 wbr
 |-  m <_ k
9 3 cv
 |-  n
10 7 9 6 wbr
 |-  k <_ n
11 8 10 wa
 |-  ( m <_ k /\ k <_ n )
12 11 4 2 crab
 |-  { k e. ZZ | ( m <_ k /\ k <_ n ) }
13 1 3 2 2 12 cmpo
 |-  ( m e. ZZ , n e. ZZ |-> { k e. ZZ | ( m <_ k /\ k <_ n ) } )
14 0 13 wceq
 |-  ... = ( m e. ZZ , n e. ZZ |-> { k e. ZZ | ( m <_ k /\ k <_ n ) } )