Description: Define an operation that produces a finite set of sequential integers. Read " M ... N " as "the set of integers from M to N inclusive". See fzval for its value and additional comments. (Contributed by NM, 6-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fz | |- ... = ( m e. ZZ , n e. ZZ |-> { k e. ZZ | ( m <_ k /\ k <_ n ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfz | |- ... |
|
| 1 | vm | |- m |
|
| 2 | cz | |- ZZ |
|
| 3 | vn | |- n |
|
| 4 | vk | |- k |
|
| 5 | 1 | cv | |- m |
| 6 | cle | |- <_ |
|
| 7 | 4 | cv | |- k |
| 8 | 5 7 6 | wbr | |- m <_ k |
| 9 | 3 | cv | |- n |
| 10 | 7 9 6 | wbr | |- k <_ n |
| 11 | 8 10 | wa | |- ( m <_ k /\ k <_ n ) |
| 12 | 11 4 2 | crab | |- { k e. ZZ | ( m <_ k /\ k <_ n ) } |
| 13 | 1 3 2 2 12 | cmpo | |- ( m e. ZZ , n e. ZZ |-> { k e. ZZ | ( m <_ k /\ k <_ n ) } ) |
| 14 | 0 13 | wceq | |- ... = ( m e. ZZ , n e. ZZ |-> { k e. ZZ | ( m <_ k /\ k <_ n ) } ) |