Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension 2)
Goldbach's conjectures
df-gbe
Metamath Proof Explorer
Description: Define the set of (even) Goldbach numbers, which are positive even
integers that can be expressed as the sum of two odd primes. By this
definition, the binary Goldbach conjecture can be expressed as
A. n e. Even ( 4 < n -> n e. GoldbachEven ) . (Contributed by AV , 14-Jun-2020)
Ref
Expression
Assertion
df-gbe
|- GoldbachEven = { z e. Even | E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ z = ( p + q ) ) }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cgbe
|- GoldbachEven
1
vz
|- z
2
ceven
|- Even
3
vp
|- p
4
cprime
|- Prime
5
vq
|- q
6
3
cv
|- p
7
codd
|- Odd
8
6 7
wcel
|- p e. Odd
9
5
cv
|- q
10
9 7
wcel
|- q e. Odd
11
1
cv
|- z
12
caddc
|- +
13
6 9 12
co
|- ( p + q )
14
11 13
wceq
|- z = ( p + q )
15
8 10 14
w3a
|- ( p e. Odd /\ q e. Odd /\ z = ( p + q ) )
16
15 5 4
wrex
|- E. q e. Prime ( p e. Odd /\ q e. Odd /\ z = ( p + q ) )
17
16 3 4
wrex
|- E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ z = ( p + q ) )
18
17 1 2
crab
|- { z e. Even | E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ z = ( p + q ) ) }
19
0 18
wceq
|- GoldbachEven = { z e. Even | E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ z = ( p + q ) ) }