Step |
Hyp |
Ref |
Expression |
0 |
|
cgcd |
|- gcd |
1 |
|
vx |
|- x |
2 |
|
cz |
|- ZZ |
3 |
|
vy |
|- y |
4 |
1
|
cv |
|- x |
5 |
|
cc0 |
|- 0 |
6 |
4 5
|
wceq |
|- x = 0 |
7 |
3
|
cv |
|- y |
8 |
7 5
|
wceq |
|- y = 0 |
9 |
6 8
|
wa |
|- ( x = 0 /\ y = 0 ) |
10 |
|
vn |
|- n |
11 |
10
|
cv |
|- n |
12 |
|
cdvds |
|- || |
13 |
11 4 12
|
wbr |
|- n || x |
14 |
11 7 12
|
wbr |
|- n || y |
15 |
13 14
|
wa |
|- ( n || x /\ n || y ) |
16 |
15 10 2
|
crab |
|- { n e. ZZ | ( n || x /\ n || y ) } |
17 |
|
cr |
|- RR |
18 |
|
clt |
|- < |
19 |
16 17 18
|
csup |
|- sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) |
20 |
9 5 19
|
cif |
|- if ( ( x = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) ) |
21 |
1 3 2 2 20
|
cmpo |
|- ( x e. ZZ , y e. ZZ |-> if ( ( x = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) ) ) |
22 |
0 21
|
wceq |
|- gcd = ( x e. ZZ , y e. ZZ |-> if ( ( x = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) ) ) |