| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgex |
|- gEx |
| 1 |
|
vg |
|- g |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vn |
|- n |
| 4 |
|
cn |
|- NN |
| 5 |
|
vx |
|- x |
| 6 |
|
cbs |
|- Base |
| 7 |
1
|
cv |
|- g |
| 8 |
7 6
|
cfv |
|- ( Base ` g ) |
| 9 |
3
|
cv |
|- n |
| 10 |
|
cmg |
|- .g |
| 11 |
7 10
|
cfv |
|- ( .g ` g ) |
| 12 |
5
|
cv |
|- x |
| 13 |
9 12 11
|
co |
|- ( n ( .g ` g ) x ) |
| 14 |
|
c0g |
|- 0g |
| 15 |
7 14
|
cfv |
|- ( 0g ` g ) |
| 16 |
13 15
|
wceq |
|- ( n ( .g ` g ) x ) = ( 0g ` g ) |
| 17 |
16 5 8
|
wral |
|- A. x e. ( Base ` g ) ( n ( .g ` g ) x ) = ( 0g ` g ) |
| 18 |
17 3 4
|
crab |
|- { n e. NN | A. x e. ( Base ` g ) ( n ( .g ` g ) x ) = ( 0g ` g ) } |
| 19 |
|
vi |
|- i |
| 20 |
19
|
cv |
|- i |
| 21 |
|
c0 |
|- (/) |
| 22 |
20 21
|
wceq |
|- i = (/) |
| 23 |
|
cc0 |
|- 0 |
| 24 |
|
cr |
|- RR |
| 25 |
|
clt |
|- < |
| 26 |
20 24 25
|
cinf |
|- inf ( i , RR , < ) |
| 27 |
22 23 26
|
cif |
|- if ( i = (/) , 0 , inf ( i , RR , < ) ) |
| 28 |
19 18 27
|
csb |
|- [_ { n e. NN | A. x e. ( Base ` g ) ( n ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) |
| 29 |
1 2 28
|
cmpt |
|- ( g e. _V |-> [_ { n e. NN | A. x e. ( Base ` g ) ( n ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| 30 |
0 29
|
wceq |
|- gEx = ( g e. _V |-> [_ { n e. NN | A. x e. ( Base ` g ) ( n ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |