Metamath Proof Explorer


Definition df-ghm

Description: A homomorphism of groups is a map between two structures which preserves the group operation. Requiring both sides to be groups simplifies most theorems at the cost of complicating the theorem which pushes forward a group structure. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion df-ghm
|- GrpHom = ( s e. Grp , t e. Grp |-> { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cghm
 |-  GrpHom
1 vs
 |-  s
2 cgrp
 |-  Grp
3 vt
 |-  t
4 vg
 |-  g
5 cbs
 |-  Base
6 1 cv
 |-  s
7 6 5 cfv
 |-  ( Base ` s )
8 vw
 |-  w
9 4 cv
 |-  g
10 8 cv
 |-  w
11 3 cv
 |-  t
12 11 5 cfv
 |-  ( Base ` t )
13 10 12 9 wf
 |-  g : w --> ( Base ` t )
14 vx
 |-  x
15 vy
 |-  y
16 14 cv
 |-  x
17 cplusg
 |-  +g
18 6 17 cfv
 |-  ( +g ` s )
19 15 cv
 |-  y
20 16 19 18 co
 |-  ( x ( +g ` s ) y )
21 20 9 cfv
 |-  ( g ` ( x ( +g ` s ) y ) )
22 16 9 cfv
 |-  ( g ` x )
23 11 17 cfv
 |-  ( +g ` t )
24 19 9 cfv
 |-  ( g ` y )
25 22 24 23 co
 |-  ( ( g ` x ) ( +g ` t ) ( g ` y ) )
26 21 25 wceq
 |-  ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) )
27 26 15 10 wral
 |-  A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) )
28 27 14 10 wral
 |-  A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) )
29 13 28 wa
 |-  ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) )
30 29 8 7 wsbc
 |-  [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) )
31 30 4 cab
 |-  { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) }
32 1 3 2 2 31 cmpo
 |-  ( s e. Grp , t e. Grp |-> { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } )
33 0 32 wceq
 |-  GrpHom = ( s e. Grp , t e. Grp |-> { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } )