| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cghm |
|- GrpHom |
| 1 |
|
vs |
|- s |
| 2 |
|
cgrp |
|- Grp |
| 3 |
|
vt |
|- t |
| 4 |
|
vg |
|- g |
| 5 |
|
cbs |
|- Base |
| 6 |
1
|
cv |
|- s |
| 7 |
6 5
|
cfv |
|- ( Base ` s ) |
| 8 |
|
vw |
|- w |
| 9 |
4
|
cv |
|- g |
| 10 |
8
|
cv |
|- w |
| 11 |
3
|
cv |
|- t |
| 12 |
11 5
|
cfv |
|- ( Base ` t ) |
| 13 |
10 12 9
|
wf |
|- g : w --> ( Base ` t ) |
| 14 |
|
vx |
|- x |
| 15 |
|
vy |
|- y |
| 16 |
14
|
cv |
|- x |
| 17 |
|
cplusg |
|- +g |
| 18 |
6 17
|
cfv |
|- ( +g ` s ) |
| 19 |
15
|
cv |
|- y |
| 20 |
16 19 18
|
co |
|- ( x ( +g ` s ) y ) |
| 21 |
20 9
|
cfv |
|- ( g ` ( x ( +g ` s ) y ) ) |
| 22 |
16 9
|
cfv |
|- ( g ` x ) |
| 23 |
11 17
|
cfv |
|- ( +g ` t ) |
| 24 |
19 9
|
cfv |
|- ( g ` y ) |
| 25 |
22 24 23
|
co |
|- ( ( g ` x ) ( +g ` t ) ( g ` y ) ) |
| 26 |
21 25
|
wceq |
|- ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) |
| 27 |
26 15 10
|
wral |
|- A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) |
| 28 |
27 14 10
|
wral |
|- A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) |
| 29 |
13 28
|
wa |
|- ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) |
| 30 |
29 8 7
|
wsbc |
|- [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) |
| 31 |
30 4
|
cab |
|- { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } |
| 32 |
1 3 2 2 31
|
cmpo |
|- ( s e. Grp , t e. Grp |-> { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } ) |
| 33 |
0 32
|
wceq |
|- GrpHom = ( s e. Grp , t e. Grp |-> { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } ) |