Step |
Hyp |
Ref |
Expression |
0 |
|
cghm |
|- GrpHom |
1 |
|
vs |
|- s |
2 |
|
cgrp |
|- Grp |
3 |
|
vt |
|- t |
4 |
|
vg |
|- g |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- s |
7 |
6 5
|
cfv |
|- ( Base ` s ) |
8 |
|
vw |
|- w |
9 |
4
|
cv |
|- g |
10 |
8
|
cv |
|- w |
11 |
3
|
cv |
|- t |
12 |
11 5
|
cfv |
|- ( Base ` t ) |
13 |
10 12 9
|
wf |
|- g : w --> ( Base ` t ) |
14 |
|
vx |
|- x |
15 |
|
vy |
|- y |
16 |
14
|
cv |
|- x |
17 |
|
cplusg |
|- +g |
18 |
6 17
|
cfv |
|- ( +g ` s ) |
19 |
15
|
cv |
|- y |
20 |
16 19 18
|
co |
|- ( x ( +g ` s ) y ) |
21 |
20 9
|
cfv |
|- ( g ` ( x ( +g ` s ) y ) ) |
22 |
16 9
|
cfv |
|- ( g ` x ) |
23 |
11 17
|
cfv |
|- ( +g ` t ) |
24 |
19 9
|
cfv |
|- ( g ` y ) |
25 |
22 24 23
|
co |
|- ( ( g ` x ) ( +g ` t ) ( g ` y ) ) |
26 |
21 25
|
wceq |
|- ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) |
27 |
26 15 10
|
wral |
|- A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) |
28 |
27 14 10
|
wral |
|- A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) |
29 |
13 28
|
wa |
|- ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) |
30 |
29 8 7
|
wsbc |
|- [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) |
31 |
30 4
|
cab |
|- { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } |
32 |
1 3 2 2 31
|
cmpo |
|- ( s e. Grp , t e. Grp |-> { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } ) |
33 |
0 32
|
wceq |
|- GrpHom = ( s e. Grp , t e. Grp |-> { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } ) |