Step |
Hyp |
Ref |
Expression |
0 |
|
cghomOLD |
|- GrpOpHom |
1 |
|
vg |
|- g |
2 |
|
cgr |
|- GrpOp |
3 |
|
vh |
|- h |
4 |
|
vf |
|- f |
5 |
4
|
cv |
|- f |
6 |
1
|
cv |
|- g |
7 |
6
|
crn |
|- ran g |
8 |
3
|
cv |
|- h |
9 |
8
|
crn |
|- ran h |
10 |
7 9 5
|
wf |
|- f : ran g --> ran h |
11 |
|
vx |
|- x |
12 |
|
vy |
|- y |
13 |
11
|
cv |
|- x |
14 |
13 5
|
cfv |
|- ( f ` x ) |
15 |
12
|
cv |
|- y |
16 |
15 5
|
cfv |
|- ( f ` y ) |
17 |
14 16 8
|
co |
|- ( ( f ` x ) h ( f ` y ) ) |
18 |
13 15 6
|
co |
|- ( x g y ) |
19 |
18 5
|
cfv |
|- ( f ` ( x g y ) ) |
20 |
17 19
|
wceq |
|- ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) |
21 |
20 12 7
|
wral |
|- A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) |
22 |
21 11 7
|
wral |
|- A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) |
23 |
10 22
|
wa |
|- ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) |
24 |
23 4
|
cab |
|- { f | ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) } |
25 |
1 3 2 2 24
|
cmpo |
|- ( g e. GrpOp , h e. GrpOp |-> { f | ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) } ) |
26 |
0 25
|
wceq |
|- GrpOpHom = ( g e. GrpOp , h e. GrpOp |-> { f | ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) } ) |