Description: Define a function that maps a group operation to the group's identity element. (Contributed by FL, 5-Feb-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-gid | |- GId = ( g e. _V |-> ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cgi | |- GId |
|
1 | vg | |- g |
|
2 | cvv | |- _V |
|
3 | vu | |- u |
|
4 | 1 | cv | |- g |
5 | 4 | crn | |- ran g |
6 | vx | |- x |
|
7 | 3 | cv | |- u |
8 | 6 | cv | |- x |
9 | 7 8 4 | co | |- ( u g x ) |
10 | 9 8 | wceq | |- ( u g x ) = x |
11 | 8 7 4 | co | |- ( x g u ) |
12 | 11 8 | wceq | |- ( x g u ) = x |
13 | 10 12 | wa | |- ( ( u g x ) = x /\ ( x g u ) = x ) |
14 | 13 6 5 | wral | |- A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) |
15 | 14 3 5 | crio | |- ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) ) |
16 | 1 2 15 | cmpt | |- ( g e. _V |-> ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) ) ) |
17 | 0 16 | wceq | |- GId = ( g e. _V |-> ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) ) ) |