Metamath Proof Explorer


Definition df-gid

Description: Define a function that maps a group operation to the group's identity element. (Contributed by FL, 5-Feb-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion df-gid
|- GId = ( g e. _V |-> ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgi
 |-  GId
1 vg
 |-  g
2 cvv
 |-  _V
3 vu
 |-  u
4 1 cv
 |-  g
5 4 crn
 |-  ran g
6 vx
 |-  x
7 3 cv
 |-  u
8 6 cv
 |-  x
9 7 8 4 co
 |-  ( u g x )
10 9 8 wceq
 |-  ( u g x ) = x
11 8 7 4 co
 |-  ( x g u )
12 11 8 wceq
 |-  ( x g u ) = x
13 10 12 wa
 |-  ( ( u g x ) = x /\ ( x g u ) = x )
14 13 6 5 wral
 |-  A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x )
15 14 3 5 crio
 |-  ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) )
16 1 2 15 cmpt
 |-  ( g e. _V |-> ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) ) )
17 0 16 wceq
 |-  GId = ( g e. _V |-> ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) ) )