Description: An isomorphism of groups is a homomorphism which is also a bijection, i.e. it preserves equality as well as the group operation. (Contributed by Stefan O'Rear, 21-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-gim | |- GrpIso = ( s e. Grp , t e. Grp |-> { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cgim | |- GrpIso |
|
1 | vs | |- s |
|
2 | cgrp | |- Grp |
|
3 | vt | |- t |
|
4 | vg | |- g |
|
5 | 1 | cv | |- s |
6 | cghm | |- GrpHom |
|
7 | 3 | cv | |- t |
8 | 5 7 6 | co | |- ( s GrpHom t ) |
9 | 4 | cv | |- g |
10 | cbs | |- Base |
|
11 | 5 10 | cfv | |- ( Base ` s ) |
12 | 7 10 | cfv | |- ( Base ` t ) |
13 | 11 12 9 | wf1o | |- g : ( Base ` s ) -1-1-onto-> ( Base ` t ) |
14 | 13 4 8 | crab | |- { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } |
15 | 1 3 2 2 14 | cmpo | |- ( s e. Grp , t e. Grp |-> { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } ) |
16 | 0 15 | wceq | |- GrpIso = ( s e. Grp , t e. Grp |-> { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } ) |