Metamath Proof Explorer


Definition df-gim

Description: An isomorphism of groups is a homomorphism which is also a bijection, i.e. it preserves equality as well as the group operation. (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Assertion df-gim
|- GrpIso = ( s e. Grp , t e. Grp |-> { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgim
 |-  GrpIso
1 vs
 |-  s
2 cgrp
 |-  Grp
3 vt
 |-  t
4 vg
 |-  g
5 1 cv
 |-  s
6 cghm
 |-  GrpHom
7 3 cv
 |-  t
8 5 7 6 co
 |-  ( s GrpHom t )
9 4 cv
 |-  g
10 cbs
 |-  Base
11 5 10 cfv
 |-  ( Base ` s )
12 7 10 cfv
 |-  ( Base ` t )
13 11 12 9 wf1o
 |-  g : ( Base ` s ) -1-1-onto-> ( Base ` t )
14 13 4 8 crab
 |-  { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) }
15 1 3 2 2 14 cmpo
 |-  ( s e. Grp , t e. Grp |-> { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } )
16 0 15 wceq
 |-  GrpIso = ( s e. Grp , t e. Grp |-> { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } )