Description: An isomorphism of groups is a homomorphism which is also a bijection, i.e. it preserves equality as well as the group operation. (Contributed by Stefan O'Rear, 21-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-gim | |- GrpIso = ( s e. Grp , t e. Grp |-> { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cgim | |- GrpIso | |
| 1 | vs | |- s | |
| 2 | cgrp | |- Grp | |
| 3 | vt | |- t | |
| 4 | vg | |- g | |
| 5 | 1 | cv | |- s | 
| 6 | cghm | |- GrpHom | |
| 7 | 3 | cv | |- t | 
| 8 | 5 7 6 | co | |- ( s GrpHom t ) | 
| 9 | 4 | cv | |- g | 
| 10 | cbs | |- Base | |
| 11 | 5 10 | cfv | |- ( Base ` s ) | 
| 12 | 7 10 | cfv | |- ( Base ` t ) | 
| 13 | 11 12 9 | wf1o | |- g : ( Base ` s ) -1-1-onto-> ( Base ` t ) | 
| 14 | 13 4 8 | crab |  |-  { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } | 
| 15 | 1 3 2 2 14 | cmpo |  |-  ( s e. Grp , t e. Grp |-> { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } ) | 
| 16 | 0 15 | wceq |  |-  GrpIso = ( s e. Grp , t e. Grp |-> { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } ) |