Metamath Proof Explorer


Definition df-goan

Description: Define the Godel-set of conjunction. Here the arguments U and V are also Godel-sets corresponding to smaller formulas. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-goan
|- /\g = ( u e. _V , v e. _V |-> -.g ( u |g v ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgoa
 |-  /\g
1 vu
 |-  u
2 cvv
 |-  _V
3 vv
 |-  v
4 1 cv
 |-  u
5 cgna
 |-  |g
6 3 cv
 |-  v
7 4 6 5 co
 |-  ( u |g v )
8 7 cgon
 |-  -.g ( u |g v )
9 1 3 2 2 8 cmpo
 |-  ( u e. _V , v e. _V |-> -.g ( u |g v ) )
10 0 9 wceq
 |-  /\g = ( u e. _V , v e. _V |-> -.g ( u |g v ) )