Metamath Proof Explorer


Definition df-gobi

Description: Define the Godel-set of equivalence. Here the arguments U and V are also Godel-sets corresponding to smaller formulas. Note that this is aclass expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gobi
|- <->g = ( u e. _V , v e. _V |-> ( ( u ->g v ) /\g ( v ->g u ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgob
 |-  <->g
1 vu
 |-  u
2 cvv
 |-  _V
3 vv
 |-  v
4 1 cv
 |-  u
5 cgoi
 |-  ->g
6 3 cv
 |-  v
7 4 6 5 co
 |-  ( u ->g v )
8 cgoa
 |-  /\g
9 6 4 5 co
 |-  ( v ->g u )
10 7 9 8 co
 |-  ( ( u ->g v ) /\g ( v ->g u ) )
11 1 3 2 2 10 cmpo
 |-  ( u e. _V , v e. _V |-> ( ( u ->g v ) /\g ( v ->g u ) ) )
12 0 11 wceq
 |-  <->g = ( u e. _V , v e. _V |-> ( ( u ->g v ) /\g ( v ->g u ) ) )