Metamath Proof Explorer


Definition df-goel

Description: Define the Godel-set of membership. Here the arguments x = <. N , P >. correspond to v_N and v_P , so ( (/) e.g 1o ) actually means v_0 e. v_1 , not 0 e. 1 . (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-goel
|- e.g = ( x e. ( _om X. _om ) |-> <. (/) , x >. )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgoe
 |-  e.g
1 vx
 |-  x
2 com
 |-  _om
3 2 2 cxp
 |-  ( _om X. _om )
4 c0
 |-  (/)
5 1 cv
 |-  x
6 4 5 cop
 |-  <. (/) , x >.
7 1 3 6 cmpt
 |-  ( x e. ( _om X. _om ) |-> <. (/) , x >. )
8 0 7 wceq
 |-  e.g = ( x e. ( _om X. _om ) |-> <. (/) , x >. )