Metamath Proof Explorer


Definition df-goeq

Description: Define the Godel-set of equality. Here the arguments x = <. N , P >. correspond to v_N and v_P , so ( (/) =g 1o ) actually means v_0 = v_1 , not 0 = 1 . Here we use the trick mentioned in ax-ext to introduce equality as a defined notion in terms of e.g . The expression suc ( u u. v ) = max ( u , v ) + 1 here is a convenient way of getting a dummy variable distinct from u and v . (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-goeq
|- =g = ( u e. _om , v e. _om |-> [_ suc ( u u. v ) / w ]_ A.g w ( ( w e.g u ) <->g ( w e.g v ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgoq
 |-  =g
1 vu
 |-  u
2 com
 |-  _om
3 vv
 |-  v
4 1 cv
 |-  u
5 3 cv
 |-  v
6 4 5 cun
 |-  ( u u. v )
7 6 csuc
 |-  suc ( u u. v )
8 vw
 |-  w
9 8 cv
 |-  w
10 cgoe
 |-  e.g
11 9 4 10 co
 |-  ( w e.g u )
12 cgob
 |-  <->g
13 9 5 10 co
 |-  ( w e.g v )
14 11 13 12 co
 |-  ( ( w e.g u ) <->g ( w e.g v ) )
15 14 9 cgol
 |-  A.g w ( ( w e.g u ) <->g ( w e.g v ) )
16 8 7 15 csb
 |-  [_ suc ( u u. v ) / w ]_ A.g w ( ( w e.g u ) <->g ( w e.g v ) )
17 1 3 2 2 16 cmpo
 |-  ( u e. _om , v e. _om |-> [_ suc ( u u. v ) / w ]_ A.g w ( ( w e.g u ) <->g ( w e.g v ) ) )
18 0 17 wceq
 |-  =g = ( u e. _om , v e. _om |-> [_ suc ( u u. v ) / w ]_ A.g w ( ( w e.g u ) <->g ( w e.g v ) ) )