Metamath Proof Explorer


Definition df-goex

Description: Define the Godel-set of existential quantification. Here N e.om corresponds to vN , and U represents another formula, and this expression is [ E. x ph ] = E.g N U where x is the N -th variable, U = [ ph ] is the code for ph . Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-goex
|- E.g N U = -.g A.g N -.g U

Detailed syntax breakdown

Step Hyp Ref Expression
0 cN
 |-  N
1 cU
 |-  U
2 1 0 cgox
 |-  E.g N U
3 1 cgon
 |-  -.g U
4 3 0 cgol
 |-  A.g N -.g U
5 4 cgon
 |-  -.g A.g N -.g U
6 2 5 wceq
 |-  E.g N U = -.g A.g N -.g U