Metamath Proof Explorer


Definition df-goim

Description: Define the Godel-set of implication. Here the arguments U and V are also Godel-sets corresponding to smaller formulas. Note that this is aclass expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-goim
|- ->g = ( u e. _V , v e. _V |-> ( u |g -.g v ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgoi
 |-  ->g
1 vu
 |-  u
2 cvv
 |-  _V
3 vv
 |-  v
4 1 cv
 |-  u
5 cgna
 |-  |g
6 3 cv
 |-  v
7 6 cgon
 |-  -.g v
8 4 7 5 co
 |-  ( u |g -.g v )
9 1 3 2 2 8 cmpo
 |-  ( u e. _V , v e. _V |-> ( u |g -.g v ) )
10 0 9 wceq
 |-  ->g = ( u e. _V , v e. _V |-> ( u |g -.g v ) )