Metamath Proof Explorer


Definition df-goor

Description: Define the Godel-set of disjunction. Here the arguments U and V are also Godel-sets corresponding to smaller formulas. Note that this is aclass expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-goor
|- \/g = ( u e. _V , v e. _V |-> ( -.g u ->g v ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgoo
 |-  \/g
1 vu
 |-  u
2 cvv
 |-  _V
3 vv
 |-  v
4 1 cv
 |-  u
5 4 cgon
 |-  -.g u
6 cgoi
 |-  ->g
7 3 cv
 |-  v
8 5 7 6 co
 |-  ( -.g u ->g v )
9 1 3 2 2 8 cmpo
 |-  ( u e. _V , v e. _V |-> ( -.g u ->g v ) )
10 0 9 wceq
 |-  \/g = ( u e. _V , v e. _V |-> ( -.g u ->g v ) )