Metamath Proof Explorer


Definition df-gz

Description: Define the set of gaussian integers, which are complex numbers whose real and imaginary parts are integers. (Note that the [ _i ] is actually part of the symbol token and has no independent meaning.) (Contributed by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion df-gz
|- Z[i] = { x e. CC | ( ( Re ` x ) e. ZZ /\ ( Im ` x ) e. ZZ ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgz
 |-  Z[i]
1 vx
 |-  x
2 cc
 |-  CC
3 cre
 |-  Re
4 1 cv
 |-  x
5 4 3 cfv
 |-  ( Re ` x )
6 cz
 |-  ZZ
7 5 6 wcel
 |-  ( Re ` x ) e. ZZ
8 cim
 |-  Im
9 4 8 cfv
 |-  ( Im ` x )
10 9 6 wcel
 |-  ( Im ` x ) e. ZZ
11 7 10 wa
 |-  ( ( Re ` x ) e. ZZ /\ ( Im ` x ) e. ZZ )
12 11 1 2 crab
 |-  { x e. CC | ( ( Re ` x ) e. ZZ /\ ( Im ` x ) e. ZZ ) }
13 0 12 wceq
 |-  Z[i] = { x e. CC | ( ( Re ` x ) e. ZZ /\ ( Im ` x ) e. ZZ ) }