Metamath Proof Explorer


Definition df-h0op

Description: Define the Hilbert space zero operator. See df0op2 for alternate definition. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-h0op
|- 0hop = ( projh ` 0H )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ch0o
 |-  0hop
1 cpjh
 |-  projh
2 c0h
 |-  0H
3 2 1 cfv
 |-  ( projh ` 0H )
4 0 3 wceq
 |-  0hop = ( projh ` 0H )