Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v . (Contributed by NM, 31-May-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-h0v | |- 0h = ( 0vec ` <. <. +h , .h >. , normh >. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | c0v | |- 0h |
|
1 | cn0v | |- 0vec |
|
2 | cva | |- +h |
|
3 | csm | |- .h |
|
4 | 2 3 | cop | |- <. +h , .h >. |
5 | cno | |- normh |
|
6 | 4 5 | cop | |- <. <. +h , .h >. , normh >. |
7 | 6 1 | cfv | |- ( 0vec ` <. <. +h , .h >. , normh >. ) |
8 | 0 7 | wceq | |- 0h = ( 0vec ` <. <. +h , .h >. , normh >. ) |