Step |
Hyp |
Ref |
Expression |
0 |
|
chash |
|- # |
1 |
|
vx |
|- x |
2 |
|
cvv |
|- _V |
3 |
1
|
cv |
|- x |
4 |
|
caddc |
|- + |
5 |
|
c1 |
|- 1 |
6 |
3 5 4
|
co |
|- ( x + 1 ) |
7 |
1 2 6
|
cmpt |
|- ( x e. _V |-> ( x + 1 ) ) |
8 |
|
cc0 |
|- 0 |
9 |
7 8
|
crdg |
|- rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |
10 |
|
com |
|- _om |
11 |
9 10
|
cres |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
12 |
|
ccrd |
|- card |
13 |
11 12
|
ccom |
|- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |
14 |
|
cfn |
|- Fin |
15 |
2 14
|
cdif |
|- ( _V \ Fin ) |
16 |
|
cpnf |
|- +oo |
17 |
16
|
csn |
|- { +oo } |
18 |
15 17
|
cxp |
|- ( ( _V \ Fin ) X. { +oo } ) |
19 |
13 18
|
cun |
|- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |
20 |
0 19
|
wceq |
|- # = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |