| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							chash | 
							 |-  #  | 
						
						
							| 1 | 
							
								
							 | 
							vx | 
							 |-  x  | 
						
						
							| 2 | 
							
								
							 | 
							cvv | 
							 |-  _V  | 
						
						
							| 3 | 
							
								1
							 | 
							cv | 
							 |-  x  | 
						
						
							| 4 | 
							
								
							 | 
							caddc | 
							 |-  +  | 
						
						
							| 5 | 
							
								
							 | 
							c1 | 
							 |-  1  | 
						
						
							| 6 | 
							
								3 5 4
							 | 
							co | 
							 |-  ( x + 1 )  | 
						
						
							| 7 | 
							
								1 2 6
							 | 
							cmpt | 
							 |-  ( x e. _V |-> ( x + 1 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cc0 | 
							 |-  0  | 
						
						
							| 9 | 
							
								7 8
							 | 
							crdg | 
							 |-  rec ( ( x e. _V |-> ( x + 1 ) ) , 0 )  | 
						
						
							| 10 | 
							
								
							 | 
							com | 
							 |-  _om  | 
						
						
							| 11 | 
							
								9 10
							 | 
							cres | 
							 |-  ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om )  | 
						
						
							| 12 | 
							
								
							 | 
							ccrd | 
							 |-  card  | 
						
						
							| 13 | 
							
								11 12
							 | 
							ccom | 
							 |-  ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card )  | 
						
						
							| 14 | 
							
								
							 | 
							cfn | 
							 |-  Fin  | 
						
						
							| 15 | 
							
								2 14
							 | 
							cdif | 
							 |-  ( _V \ Fin )  | 
						
						
							| 16 | 
							
								
							 | 
							cpnf | 
							 |-  +oo  | 
						
						
							| 17 | 
							
								16
							 | 
							csn | 
							 |-  { +oo } | 
						
						
							| 18 | 
							
								15 17
							 | 
							cxp | 
							 |-  ( ( _V \ Fin ) X. { +oo } ) | 
						
						
							| 19 | 
							
								13 18
							 | 
							cun | 
							 |-  ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) | 
						
						
							| 20 | 
							
								0 19
							 | 
							wceq | 
							 |-  # = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |