Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex ). Note that ~H is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba . (Contributed by NM, 31-May-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-hba | |- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | chba | |- ~H |
|
1 | cba | |- BaseSet |
|
2 | cva | |- +h |
|
3 | csm | |- .h |
|
4 | 2 3 | cop | |- <. +h , .h >. |
5 | cno | |- normh |
|
6 | 4 5 | cop | |- <. <. +h , .h >. , normh >. |
7 | 6 1 | cfv | |- ( BaseSet ` <. <. +h , .h >. , normh >. ) |
8 | 0 7 | wceq | |- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |