| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccauold |  |-  Cauchy | 
						
							| 1 |  | vf |  |-  f | 
						
							| 2 |  | chba |  |-  ~H | 
						
							| 3 |  | cmap |  |-  ^m | 
						
							| 4 |  | cn |  |-  NN | 
						
							| 5 | 2 4 3 | co |  |-  ( ~H ^m NN ) | 
						
							| 6 |  | vx |  |-  x | 
						
							| 7 |  | crp |  |-  RR+ | 
						
							| 8 |  | vy |  |-  y | 
						
							| 9 |  | vz |  |-  z | 
						
							| 10 |  | cuz |  |-  ZZ>= | 
						
							| 11 | 8 | cv |  |-  y | 
						
							| 12 | 11 10 | cfv |  |-  ( ZZ>= ` y ) | 
						
							| 13 |  | cno |  |-  normh | 
						
							| 14 | 1 | cv |  |-  f | 
						
							| 15 | 11 14 | cfv |  |-  ( f ` y ) | 
						
							| 16 |  | cmv |  |-  -h | 
						
							| 17 | 9 | cv |  |-  z | 
						
							| 18 | 17 14 | cfv |  |-  ( f ` z ) | 
						
							| 19 | 15 18 16 | co |  |-  ( ( f ` y ) -h ( f ` z ) ) | 
						
							| 20 | 19 13 | cfv |  |-  ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) | 
						
							| 21 |  | clt |  |-  < | 
						
							| 22 | 6 | cv |  |-  x | 
						
							| 23 | 20 22 21 | wbr |  |-  ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x | 
						
							| 24 | 23 9 12 | wral |  |-  A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x | 
						
							| 25 | 24 8 4 | wrex |  |-  E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x | 
						
							| 26 | 25 6 7 | wral |  |-  A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x | 
						
							| 27 | 26 1 5 | crab |  |-  { f e. ( ~H ^m NN ) | A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x } | 
						
							| 28 | 0 27 | wceq |  |-  Cauchy = { f e. ( ~H ^m NN ) | A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x } |