| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccauold |
|- Cauchy |
| 1 |
|
vf |
|- f |
| 2 |
|
chba |
|- ~H |
| 3 |
|
cmap |
|- ^m |
| 4 |
|
cn |
|- NN |
| 5 |
2 4 3
|
co |
|- ( ~H ^m NN ) |
| 6 |
|
vx |
|- x |
| 7 |
|
crp |
|- RR+ |
| 8 |
|
vy |
|- y |
| 9 |
|
vz |
|- z |
| 10 |
|
cuz |
|- ZZ>= |
| 11 |
8
|
cv |
|- y |
| 12 |
11 10
|
cfv |
|- ( ZZ>= ` y ) |
| 13 |
|
cno |
|- normh |
| 14 |
1
|
cv |
|- f |
| 15 |
11 14
|
cfv |
|- ( f ` y ) |
| 16 |
|
cmv |
|- -h |
| 17 |
9
|
cv |
|- z |
| 18 |
17 14
|
cfv |
|- ( f ` z ) |
| 19 |
15 18 16
|
co |
|- ( ( f ` y ) -h ( f ` z ) ) |
| 20 |
19 13
|
cfv |
|- ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) |
| 21 |
|
clt |
|- < |
| 22 |
6
|
cv |
|- x |
| 23 |
20 22 21
|
wbr |
|- ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x |
| 24 |
23 9 12
|
wral |
|- A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x |
| 25 |
24 8 4
|
wrex |
|- E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x |
| 26 |
25 6 7
|
wral |
|- A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x |
| 27 |
26 1 5
|
crab |
|- { f e. ( ~H ^m NN ) | A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x } |
| 28 |
0 27
|
wceq |
|- Cauchy = { f e. ( ~H ^m NN ) | A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x } |