Metamath Proof Explorer


Definition df-hfmul

Description: Define the scalar product with a Hilbert space functional. Definition of Beran p. 111. (Contributed by NM, 23-May-2006) (New usage is discouraged.)

Ref Expression
Assertion df-hfmul
|- .fn = ( f e. CC , g e. ( CC ^m ~H ) |-> ( x e. ~H |-> ( f x. ( g ` x ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chft
 |-  .fn
1 vf
 |-  f
2 cc
 |-  CC
3 vg
 |-  g
4 cmap
 |-  ^m
5 chba
 |-  ~H
6 2 5 4 co
 |-  ( CC ^m ~H )
7 vx
 |-  x
8 1 cv
 |-  f
9 cmul
 |-  x.
10 3 cv
 |-  g
11 7 cv
 |-  x
12 11 10 cfv
 |-  ( g ` x )
13 8 12 9 co
 |-  ( f x. ( g ` x ) )
14 7 5 13 cmpt
 |-  ( x e. ~H |-> ( f x. ( g ` x ) ) )
15 1 3 2 6 14 cmpo
 |-  ( f e. CC , g e. ( CC ^m ~H ) |-> ( x e. ~H |-> ( f x. ( g ` x ) ) ) )
16 0 15 wceq
 |-  .fn = ( f e. CC , g e. ( CC ^m ~H ) |-> ( x e. ~H |-> ( f x. ( g ` x ) ) ) )