Metamath Proof Explorer


Definition df-hfsum

Description: Define the sum of two Hilbert space functionals. Definition of Beran p. 111. Note that unlike some authors, we define a functional as any function from ~H to CC , not just linear (or bounded linear) ones. (Contributed by NM, 23-May-2006) (New usage is discouraged.)

Ref Expression
Assertion df-hfsum
|- +fn = ( f e. ( CC ^m ~H ) , g e. ( CC ^m ~H ) |-> ( x e. ~H |-> ( ( f ` x ) + ( g ` x ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chfs
 |-  +fn
1 vf
 |-  f
2 cc
 |-  CC
3 cmap
 |-  ^m
4 chba
 |-  ~H
5 2 4 3 co
 |-  ( CC ^m ~H )
6 vg
 |-  g
7 vx
 |-  x
8 1 cv
 |-  f
9 7 cv
 |-  x
10 9 8 cfv
 |-  ( f ` x )
11 caddc
 |-  +
12 6 cv
 |-  g
13 9 12 cfv
 |-  ( g ` x )
14 10 13 11 co
 |-  ( ( f ` x ) + ( g ` x ) )
15 7 4 14 cmpt
 |-  ( x e. ~H |-> ( ( f ` x ) + ( g ` x ) ) )
16 1 6 5 5 15 cmpo
 |-  ( f e. ( CC ^m ~H ) , g e. ( CC ^m ~H ) |-> ( x e. ~H |-> ( ( f ` x ) + ( g ` x ) ) ) )
17 0 16 wceq
 |-  +fn = ( f e. ( CC ^m ~H ) , g e. ( CC ^m ~H ) |-> ( x e. ~H |-> ( ( f ` x ) + ( g ` x ) ) ) )