Description: Define the sum of two Hilbert space functionals. Definition of Beran p. 111. Note that unlike some authors, we define a functional as any function from ~H to CC , not just linear (or bounded linear) ones. (Contributed by NM, 23-May-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-hfsum | |- +fn = ( f e. ( CC ^m ~H ) , g e. ( CC ^m ~H ) |-> ( x e. ~H |-> ( ( f ` x ) + ( g ` x ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | chfs | |- +fn |
|
1 | vf | |- f |
|
2 | cc | |- CC |
|
3 | cmap | |- ^m |
|
4 | chba | |- ~H |
|
5 | 2 4 3 | co | |- ( CC ^m ~H ) |
6 | vg | |- g |
|
7 | vx | |- x |
|
8 | 1 | cv | |- f |
9 | 7 | cv | |- x |
10 | 9 8 | cfv | |- ( f ` x ) |
11 | caddc | |- + |
|
12 | 6 | cv | |- g |
13 | 9 12 | cfv | |- ( g ` x ) |
14 | 10 13 11 | co | |- ( ( f ` x ) + ( g ` x ) ) |
15 | 7 4 14 | cmpt | |- ( x e. ~H |-> ( ( f ` x ) + ( g ` x ) ) ) |
16 | 1 6 5 5 15 | cmpo | |- ( f e. ( CC ^m ~H ) , g e. ( CC ^m ~H ) |-> ( x e. ~H |-> ( ( f ` x ) + ( g ` x ) ) ) ) |
17 | 0 16 | wceq | |- +fn = ( f e. ( CC ^m ~H ) , g e. ( CC ^m ~H ) |-> ( x e. ~H |-> ( ( f ` x ) + ( g ` x ) ) ) ) |