Step |
Hyp |
Ref |
Expression |
0 |
|
chlg |
|- hlG |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
vc |
|- c |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- g |
6 |
5 4
|
cfv |
|- ( Base ` g ) |
7 |
|
va |
|- a |
8 |
|
vb |
|- b |
9 |
7
|
cv |
|- a |
10 |
9 6
|
wcel |
|- a e. ( Base ` g ) |
11 |
8
|
cv |
|- b |
12 |
11 6
|
wcel |
|- b e. ( Base ` g ) |
13 |
10 12
|
wa |
|- ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) |
14 |
3
|
cv |
|- c |
15 |
9 14
|
wne |
|- a =/= c |
16 |
11 14
|
wne |
|- b =/= c |
17 |
|
citv |
|- Itv |
18 |
5 17
|
cfv |
|- ( Itv ` g ) |
19 |
14 11 18
|
co |
|- ( c ( Itv ` g ) b ) |
20 |
9 19
|
wcel |
|- a e. ( c ( Itv ` g ) b ) |
21 |
14 9 18
|
co |
|- ( c ( Itv ` g ) a ) |
22 |
11 21
|
wcel |
|- b e. ( c ( Itv ` g ) a ) |
23 |
20 22
|
wo |
|- ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) |
24 |
15 16 23
|
w3a |
|- ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) |
25 |
13 24
|
wa |
|- ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) |
26 |
25 7 8
|
copab |
|- { <. a , b >. | ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) } |
27 |
3 6 26
|
cmpt |
|- ( c e. ( Base ` g ) |-> { <. a , b >. | ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) } ) |
28 |
1 2 27
|
cmpt |
|- ( g e. _V |-> ( c e. ( Base ` g ) |-> { <. a , b >. | ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) } ) ) |
29 |
0 28
|
wceq |
|- hlG = ( g e. _V |-> ( c e. ( Base ` g ) |-> { <. a , b >. | ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) } ) ) |