| Step |
Hyp |
Ref |
Expression |
| 0 |
|
chli |
|- ~~>v |
| 1 |
|
vf |
|- f |
| 2 |
|
vw |
|- w |
| 3 |
1
|
cv |
|- f |
| 4 |
|
cn |
|- NN |
| 5 |
|
chba |
|- ~H |
| 6 |
4 5 3
|
wf |
|- f : NN --> ~H |
| 7 |
2
|
cv |
|- w |
| 8 |
7 5
|
wcel |
|- w e. ~H |
| 9 |
6 8
|
wa |
|- ( f : NN --> ~H /\ w e. ~H ) |
| 10 |
|
vx |
|- x |
| 11 |
|
crp |
|- RR+ |
| 12 |
|
vy |
|- y |
| 13 |
|
vz |
|- z |
| 14 |
|
cuz |
|- ZZ>= |
| 15 |
12
|
cv |
|- y |
| 16 |
15 14
|
cfv |
|- ( ZZ>= ` y ) |
| 17 |
|
cno |
|- normh |
| 18 |
13
|
cv |
|- z |
| 19 |
18 3
|
cfv |
|- ( f ` z ) |
| 20 |
|
cmv |
|- -h |
| 21 |
19 7 20
|
co |
|- ( ( f ` z ) -h w ) |
| 22 |
21 17
|
cfv |
|- ( normh ` ( ( f ` z ) -h w ) ) |
| 23 |
|
clt |
|- < |
| 24 |
10
|
cv |
|- x |
| 25 |
22 24 23
|
wbr |
|- ( normh ` ( ( f ` z ) -h w ) ) < x |
| 26 |
25 13 16
|
wral |
|- A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x |
| 27 |
26 12 4
|
wrex |
|- E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x |
| 28 |
27 10 11
|
wral |
|- A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x |
| 29 |
9 28
|
wa |
|- ( ( f : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x ) |
| 30 |
29 1 2
|
copab |
|- { <. f , w >. | ( ( f : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x ) } |
| 31 |
0 30
|
wceq |
|- ~~>v = { <. f , w >. | ( ( f : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x ) } |