Metamath Proof Explorer


Definition df-hmeo

Description: Function returning all the homeomorphisms from topology j to topology k . (Contributed by FL, 14-Feb-2007)

Ref Expression
Assertion df-hmeo
|- Homeo = ( j e. Top , k e. Top |-> { f e. ( j Cn k ) | `' f e. ( k Cn j ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chmeo
 |-  Homeo
1 vj
 |-  j
2 ctop
 |-  Top
3 vk
 |-  k
4 vf
 |-  f
5 1 cv
 |-  j
6 ccn
 |-  Cn
7 3 cv
 |-  k
8 5 7 6 co
 |-  ( j Cn k )
9 4 cv
 |-  f
10 9 ccnv
 |-  `' f
11 7 5 6 co
 |-  ( k Cn j )
12 10 11 wcel
 |-  `' f e. ( k Cn j )
13 12 4 8 crab
 |-  { f e. ( j Cn k ) | `' f e. ( k Cn j ) }
14 1 3 2 2 13 cmpo
 |-  ( j e. Top , k e. Top |-> { f e. ( j Cn k ) | `' f e. ( k Cn j ) } )
15 0 14 wceq
 |-  Homeo = ( j e. Top , k e. Top |-> { f e. ( j Cn k ) | `' f e. ( k Cn j ) } )