Metamath Proof Explorer


Definition df-hmo

Description: Define the set of Hermitian (self-adjoint) operators on a normed complex vector space (normally a Hilbert space). Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)

Ref Expression
Assertion df-hmo
|- HmOp = ( u e. NrmCVec |-> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chmo
 |-  HmOp
1 vu
 |-  u
2 cnv
 |-  NrmCVec
3 vt
 |-  t
4 1 cv
 |-  u
5 caj
 |-  adj
6 4 4 5 co
 |-  ( u adj u )
7 6 cdm
 |-  dom ( u adj u )
8 3 cv
 |-  t
9 8 6 cfv
 |-  ( ( u adj u ) ` t )
10 9 8 wceq
 |-  ( ( u adj u ) ` t ) = t
11 10 3 7 crab
 |-  { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t }
12 1 2 11 cmpt
 |-  ( u e. NrmCVec |-> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } )
13 0 12 wceq
 |-  HmOp = ( u e. NrmCVec |-> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } )