Description: Define the set of Hermitian (self-adjoint) operators on a normed complex vector space (normally a Hilbert space). Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-hmo | |- HmOp = ( u e. NrmCVec |-> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | chmo | |- HmOp |
|
1 | vu | |- u |
|
2 | cnv | |- NrmCVec |
|
3 | vt | |- t |
|
4 | 1 | cv | |- u |
5 | caj | |- adj |
|
6 | 4 4 5 | co | |- ( u adj u ) |
7 | 6 | cdm | |- dom ( u adj u ) |
8 | 3 | cv | |- t |
9 | 8 6 | cfv | |- ( ( u adj u ) ` t ) |
10 | 9 8 | wceq | |- ( ( u adj u ) ` t ) = t |
11 | 10 3 7 | crab | |- { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } |
12 | 1 2 11 | cmpt | |- ( u e. NrmCVec |-> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } ) |
13 | 0 12 | wceq | |- HmOp = ( u e. NrmCVec |-> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } ) |