Description: Define the set of Hermitian operators on Hilbert space. Some books call these "symmetric operators" and others call them "self-adjoint operators", sometimes with slightly different technical meanings. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-hmop | |- HrmOp = { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. ~H ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cho | |- HrmOp |
|
| 1 | vt | |- t |
|
| 2 | chba | |- ~H |
|
| 3 | cmap | |- ^m |
|
| 4 | 2 2 3 | co | |- ( ~H ^m ~H ) |
| 5 | vx | |- x |
|
| 6 | vy | |- y |
|
| 7 | 5 | cv | |- x |
| 8 | csp | |- .ih |
|
| 9 | 1 | cv | |- t |
| 10 | 6 | cv | |- y |
| 11 | 10 9 | cfv | |- ( t ` y ) |
| 12 | 7 11 8 | co | |- ( x .ih ( t ` y ) ) |
| 13 | 7 9 | cfv | |- ( t ` x ) |
| 14 | 13 10 8 | co | |- ( ( t ` x ) .ih y ) |
| 15 | 12 14 | wceq | |- ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y ) |
| 16 | 15 6 2 | wral | |- A. y e. ~H ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y ) |
| 17 | 16 5 2 | wral | |- A. x e. ~H A. y e. ~H ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y ) |
| 18 | 17 1 4 | crab | |- { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. ~H ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y ) } |
| 19 | 0 18 | wceq | |- HrmOp = { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. ~H ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y ) } |