Metamath Proof Explorer


Definition df-hmop

Description: Define the set of Hermitian operators on Hilbert space. Some books call these "symmetric operators" and others call them "self-adjoint operators", sometimes with slightly different technical meanings. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion df-hmop
|- HrmOp = { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. ~H ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cho
 |-  HrmOp
1 vt
 |-  t
2 chba
 |-  ~H
3 cmap
 |-  ^m
4 2 2 3 co
 |-  ( ~H ^m ~H )
5 vx
 |-  x
6 vy
 |-  y
7 5 cv
 |-  x
8 csp
 |-  .ih
9 1 cv
 |-  t
10 6 cv
 |-  y
11 10 9 cfv
 |-  ( t ` y )
12 7 11 8 co
 |-  ( x .ih ( t ` y ) )
13 7 9 cfv
 |-  ( t ` x )
14 13 10 8 co
 |-  ( ( t ` x ) .ih y )
15 12 14 wceq
 |-  ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y )
16 15 6 2 wral
 |-  A. y e. ~H ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y )
17 16 5 2 wral
 |-  A. x e. ~H A. y e. ~H ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y )
18 17 1 4 crab
 |-  { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. ~H ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y ) }
19 0 18 wceq
 |-  HrmOp = { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. ~H ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y ) }