Description: Define the functionalized Hom-set operator, which is exactly like Hom but is guaranteed to be a function on the base. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-homf | |- Homf = ( c e. _V |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | chomf | |- Homf | |
| 1 | vc | |- c | |
| 2 | cvv | |- _V | |
| 3 | vx | |- x | |
| 4 | cbs | |- Base | |
| 5 | 1 | cv | |- c | 
| 6 | 5 4 | cfv | |- ( Base ` c ) | 
| 7 | vy | |- y | |
| 8 | 3 | cv | |- x | 
| 9 | chom | |- Hom | |
| 10 | 5 9 | cfv | |- ( Hom ` c ) | 
| 11 | 7 | cv | |- y | 
| 12 | 8 11 10 | co | |- ( x ( Hom ` c ) y ) | 
| 13 | 3 7 6 6 12 | cmpo | |- ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) | 
| 14 | 1 2 13 | cmpt | |- ( c e. _V |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) ) | 
| 15 | 0 14 | wceq | |- Homf = ( c e. _V |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) ) |