Metamath Proof Explorer


Definition df-homul

Description: Define the scalar product with a Hilbert space operator. Definition of Beran p. 111. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-homul
|- .op = ( f e. CC , g e. ( ~H ^m ~H ) |-> ( x e. ~H |-> ( f .h ( g ` x ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chot
 |-  .op
1 vf
 |-  f
2 cc
 |-  CC
3 vg
 |-  g
4 chba
 |-  ~H
5 cmap
 |-  ^m
6 4 4 5 co
 |-  ( ~H ^m ~H )
7 vx
 |-  x
8 1 cv
 |-  f
9 csm
 |-  .h
10 3 cv
 |-  g
11 7 cv
 |-  x
12 11 10 cfv
 |-  ( g ` x )
13 8 12 9 co
 |-  ( f .h ( g ` x ) )
14 7 4 13 cmpt
 |-  ( x e. ~H |-> ( f .h ( g ` x ) ) )
15 1 3 2 6 14 cmpo
 |-  ( f e. CC , g e. ( ~H ^m ~H ) |-> ( x e. ~H |-> ( f .h ( g ` x ) ) ) )
16 0 15 wceq
 |-  .op = ( f e. CC , g e. ( ~H ^m ~H ) |-> ( x e. ~H |-> ( f .h ( g ` x ) ) ) )