Metamath Proof Explorer


Definition df-hvsub

Description: Define vector subtraction. See hvsubvali for its value and hvsubcli for its closure. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)

Ref Expression
Assertion df-hvsub
|- -h = ( x e. ~H , y e. ~H |-> ( x +h ( -u 1 .h y ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmv
 |-  -h
1 vx
 |-  x
2 chba
 |-  ~H
3 vy
 |-  y
4 1 cv
 |-  x
5 cva
 |-  +h
6 c1
 |-  1
7 6 cneg
 |-  -u 1
8 csm
 |-  .h
9 3 cv
 |-  y
10 7 9 8 co
 |-  ( -u 1 .h y )
11 4 10 5 co
 |-  ( x +h ( -u 1 .h y ) )
12 1 3 2 2 11 cmpo
 |-  ( x e. ~H , y e. ~H |-> ( x +h ( -u 1 .h y ) ) )
13 0 12 wceq
 |-  -h = ( x e. ~H , y e. ~H |-> ( x +h ( -u 1 .h y ) ) )